If it's not what You are looking for type in the equation solver your own equation and let us solve it.
40n^2=230^3
We move all terms to the left:
40n^2-(230^3)=0
We add all the numbers together, and all the variables
40n^2-12167000=0
a = 40; b = 0; c = -12167000;
Δ = b2-4ac
Δ = 02-4·40·(-12167000)
Δ = 1946720000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1946720000}=\sqrt{84640000*23}=\sqrt{84640000}*\sqrt{23}=9200\sqrt{23}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-9200\sqrt{23}}{2*40}=\frac{0-9200\sqrt{23}}{80} =-\frac{9200\sqrt{23}}{80} =-115\sqrt{23} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+9200\sqrt{23}}{2*40}=\frac{0+9200\sqrt{23}}{80} =\frac{9200\sqrt{23}}{80} =115\sqrt{23} $
| 7(g-82)=98 | | u/2+7=10 | | 17=3(g+3)+g | | -72+10y=8 | | k/4+9=11 | | (2z+09)=(4z-3) | | 4(n+5)(n+2)=280^3 | | 5x+24=-1 | | 5(x+8)-3=12 | | 19=6x+31 | | 8(2x7)=3 | | 9x+2=641 | | 42=9z | | 4x-4.6=2x+3.2 | | 32x=-340 | | 7-4x=-45 | | 9=u+34/7 | | 6x+1/4x=450 | | 4x-2(x+8)=32 | | 15-3z=12 | | -16+y=-13 | | 4×-9=x+15 | | -9x+0,6=3x+3 | | (4)(n+5)(n+2)=280^3 | | 12-2s=4 | | 10-4+6m-m=1+4m | | 8x+20=121 | | g(2)=5(2)-1 | | 15x-10(12x)-10(22)=20(9x)+20(37) | | 7x-6+5=84 | | 1/5+x=3/10 | | 3/10=x+1/5 |